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ABSTRACT 

 

 This thesis considers parameter estimation for different statistical models used on count 

data. The motivating data consists of multiple independent count variables with a moderate sample 

size per variable. The data were collected during the assessment of oral reading fluency (ORF) in 

school-aged children. A sample of fourth-grade students were given one of ten available passages 

to read with these differing in length and difficulty. The observed number of words read incorrectly 

(WRI) is used to measure ORF. Five models are considered for WRI scores, namely the binomial, 

the Poisson, the zero-inflated binomial, the zero-inflated Poisson, and the beta-

binomial distributions. We aim to efficiently estimate passage difficulty, a quantity expressed as a 

function of the underlying model parameters. In addition to considering ordinary maximum 

likelihood, two types of penalty functions are considered for penalized likelihood. The goal 

of shrinkage is to encourage parameter estimates either closer to zero or closer to one another. A 

simulation study evaluates the efficacy of the shrinkage estimates using Mean Square Error (MSE) 

as metric. Big reductions in MSE relative to unpenalized maximum likelihood are observed. The 

thesis concludes with an analysis of the motivating ORF data. 

 



Statistical Models for Reading Count Data

Minh Thu Bui

April 15, 2022

1 Introduction

1.1 Measuring Oral Reading Fluency

The definition of Oral Reading Fluency (ORF) is “the oral translation of text with speed and accuracy,”

see for example Fuchs et al. (2001) and Shinn et al. (1992). Reading fluency is a skill developed during

childhood that is needed to understand the meaning of texts and literary pieces. There is a strong correlation

between reading fluency and reading comprehension, see Allington (1983); Johns and Lunn (1983); Samuels

(1988); Schreiber (1991). According to DiSalle and Rasinski (2017), once a student has identified a word and

read it correctly, their focus generally shifts from word recognition (attempting to recognize the word) to

comprehension (making meaning of the word). This leads to overall understanding of the text. These authors

have claimed that the incompetent ORF levels are the cause of up to 90% of reading fluency issues. If a child

is not fluent in their reading, their ability to read comprehensively is hindered and they will have trouble in

grasping the meaning of texts. Thus, ORF is a method of evaluating whether a child is at their appropriate

reading level compared to their peers and provides a quantifiable score to identify at-risk students with poor

reading skills.

In this thesis, ORF data collected from a sample of 508 fourth-grade students is analyzed. Each student

was given one randomly selected passage (out of ten available) to read and the number of words read

incorrectly (WRI) was recorded. This resulted in a maximum of 53 and a minimum of 49 observations per

passage. Moreover, their lengths vary from three to five sentences each, with a median of 51 words, and the

minimum is 44 words while the maximum is 69 words. Reading sessions were recorded so that observer error

in counting the number of words read correctly and incorrectly can be minimized. Strong readers tend to

have low WRI scores and weak readers tend to have high WRI scores. However, as the passages may not all

be equal in difficulty, it is important to be cautious in using WRI scores obtained from different passages to

measure overall ORF levels in a classroom setting.

For the 10 reading passages, Countj denotes a vector that contains the WRI data for the studets who

read passage j, j = 1, 2, ..., 10; each data value is the number of the words a specific student got wrong while

reading the passage. Furthermore, the integer Nj indicates the number of words j passage and nj denotes
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the number of students who read passage j.

For the initial analysis of ORF data, we considered five different models on the count data. These were

the binomial, Poisson, beta-binomial, zero-inflated binomial, and zero-inflated Poisson distributions. The

reason why we choose these five models are as follow:

1. The binomial model is easy to interpret as it is expressed directly in terms of the success probability, with

a success being represented the participant reading the words incorrectly. Furthermore, the binomial

distribution naturally conforms to the bounds on the data, i.e. the length of the passage.

2. Poisson model is a great fit to measure probability of rare events, in which the WRI scores tend to

be small. However, the Poisson distribution does not preserve the natural range of the data, i.e. the

model potentially allows more WRI than the passage length.

3. Beta-binomial distribution generalizes the binomial distribution by allowing the success probability to

vary to each word in the passage.

4. Zero-inflated models are designed for datasets where many observations are equal to 0. In the data

being considered, it is frequently the case where the passage is read without any errors so the WRI

score is 0. We show in the next subsection how zero inflation can be applied to both the binomial and

Poisson models.

In the remainder of chapter 1, we give an overview of each of the model mentioned above. In chapter 2, we

review the technique of maximum likelihood and measure how well the proposed models fit the WRI data

by both visual inspection and the Akaike Information Criterion (AIC). In chapter 3, we consider modified

estimation by introducing bias through the use of penalty functions. The introduction of bias has the potential

to improve parameter estimation when considering mean squared error (MSE) as a criterion. Next, chapter 4

considers the practical implementation of penalized estimation and then chapter 5 presents some simulation

results. Furthermore, chapter 6 illustrates the final data analysis and conclusions following in chapter 7.

1.2 Models’ Origins and Probability Mass Function

The first model being considered is the binomial distribution, which was formulated by a Swiss mathematician

Jakob Bernoulli in 1713, see Routledge (2018). It became a much more widely used statistical method after

Ronald Fisher published his work using the binomial distribution in 1936. Binomial distribution considers

data with a fixed number of trials with the probability of either success or failure. In our thesis, the probability

of success is interpreted as the expected proportion of Words Read Incorrectly (WRI). The model pmf is

fj(x) =

(
Nj

x

)
pxj (1− pj)

Nj−x with x = 0, 1, ..., Nj .

Note that pj denotes the success probability (probability of getting a word wrong) and Nj is the length of

the j passage.
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The Poisson model was developed by the French mathematician Siméon-Denis Poisson in 1830 to describe

the number of times a gambler would win a rarely won game of chance in a large number of tries, see

Routledge (2020). Poisson distribution is appropriate for counting rare events over a period of time. This is

an approximation in present setting since the Poisson distribution does not have an upper bound. However,

a majority of students read most words correctly and WRI can be considered a rare event count. The model

pmf is

fj(x) =
λx
j e

λj

x!
with x = 0, 1, 2, ...

with λj denoting the mean number of words read incorrectly for passage j.

We also consider the beta-binomial distribution, a generalization of the binomial distribution that does

not assume a fixed success probability. The beta-binomial distribution is relevant to the WRI context as not

all words in the passage are equally difficult to read. For more background, see Griffiths (1973). The pmf is

given by

fj(x) =

(
Nj

x

)
B(x+ αj , Nj − x+ βj)

B(αj , βj)
with x = 0, 1, ..., Nj

where B(x, y) denotes the Beta function. In this model, the success probabilities are assumed to be drawn

from a beta distribution, a continuous distribution that takes values on the interval [0,1] and depends on two

parameters, αj > 0 and βj > 0.

Next, regarding the zero-inflated models, let X denote a count variable (for example Poisson or binomial),

and let f(x) denote the pmf of that distribution. The zero-inflated version, denoted Y , behaves like the

original distribution X but it has proportionally more zeros than X. There has been much research that

deals with data that containing excess zero values. One of the first to use is Cohen (1967). Now, let γ ∈ [0,1]

denote the proportion of excess zeros. The pmf of Y can be written in terms of the pmf of X as

gY (y) =

γ + (1− γ)fX(0), if y = 0

(1− γ)fX(y), if y ≥ 1

We consider zero-inflated versions of both of binomial and Poisson distributions. Given the pmf of all the

distribution models being considered, we now explore how to find the model that best represents our dataset

using maximum likelihood estimation in the next section.

2 Data Analysis and Maximum Likelihood Estimators

2.1 Maximum Likelihood Estimation

Maximum likelihood estimation is a commonly used technique that helps us evaluate the parameters that

describe our dataset. Our goal is to estimate a parameter (or sets of parameters) called θ, assuming θ is the
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parameter(s) of interest. Then, maximum likelihood follows a procedure of (1) constructing the likelihood

function f(x|θ), then (2) evaluating the log-likelihood function, which is the natural log of f(x|θ), and (3)

setting the derivative of f(x|θ) equal to 0 to solve for the best-fitted parameter(s), θ̂.

Below, the method of maximum likelihood estimation is illustrated using the Poisson distribution as

reference.

Example 1. Let x1, x2,..., xn denote a random sample drawn from the population. Construct a log-likelihood

function of a Poisson(λ) population. The likelihood function of a Poisson(λ) distribution is

L(λ) =
n∏

i=1

λxje−λ

xi!
.

The log-likelihood is defined as

l(λ) = ln (L(λ))

= ln

(
n∏

i=1

λxje−λ

xi!

)

=

n∑
i=1

ln

(
λxje−λ

xi!

)

=

n∑
i=1

[ln(e−λ)− ln(xi!) + ln(λxi)]

=

n∑
i=1

[−λ− ln(xi!) + xi ln(λ)]

= −nλ−
n∑

i=1

ln(xi!) + lnλ

n∑
i=1

xi.

Thus, the log-likelihood of a Poisson(λ) is l(λ) = −nλ−
∑n

i=1 ln(xi!)+lnλ
∑n

i=1 xi. Next, we take a derivative

of the log-likelihood functions. In particular, we find the MLE θ̂ by solving the equation l′(λ) = 0.

dl

dλ
= (−nλ−

n∑
i=1

ln(xi!) + lnλ

n∑
i=1

xi)
′

⇒ −n+
1

λ

n∑
i=1

xi = 0

⇔ 1

λ
=

n∑n
i=1 xi

⇔ λ̂ =
1

n

n∑
i=1

xi = x̄

Hence, the MLE of λ is λ̂ = x̄. If we take a closer look at the Poisson model, we can see that it has a

closed-form solution. However, this is not always the case for every statistical model. For models without

a closed-form solution, numerical methods must be used to find the MLE. We demonstrate the numerical
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calculations of the MLE calculation here using the R software.

The log-likelihood function is defined below as a R function that requires two inputs, the model parameters

and a data object. The function returns the value of the negative log-likelihood. Below is an example for

Poisson distribution:

poisson_nllh <- function(data , par) {

x <- data

lambda <- par

llh <- sum(dpois(x, lambda , log = TRUE))

return(-llh)}

In this function, dpois() calculates the Poisson pmf and the argument log = TRUE indicates that these

values should be returned on a natural log scale. The input data is an array that contains observations while

par is the model parameter(s) to be optimized. We use similar functions to evaluate the log-likelihoods of

other distributions with the only difference being the command that evaluates the pmf. For example, for the

binomial distribution, we use dbinom() and for beta-binomial dbbinom(). In R, we use optim() to calculate

the maximum likelihood estimator (MLE) for each distribution. By default, optim() uses a Nelder-Mead

algorithm to minimize the input function. However, if we specify method = ’BFGS’ then the function will

use the Broyden–Fletcher–Goldfarb–Shanno algorithm and numerically evaluate the gradient. Below is a

code snippet illustrating this for the Poisson distribution. Note that Count.data is the name of our data

MLE_poisson <- optim(1,poisson_nllh , data = Count.data)

The numeric value 1 in the above code snippet is the initial value used by the optimization routine. There

are four outputs: par, value, count, and convergence. Output par shows the MLEs of the parameters,

which is λ̂ in Poisson distribution. Meanwhile, value gives us the value of the negative log-likelihood at

the MLEs. Also, count is a vector that reports the number of calls to the log-likelihood function and the

gradient. Finally, convergence returns the value 0 if convergence was achieved, while other values indicate

potential numerical difficulties.

2.2 Empirical and Model-based Probabilities for Count Data Records

In this section, we visually inspect the data for Count1. Recall that Count1 represents the WRI scores of

the first passage. Our visualization will include both empirical and model probabilities.

Empirical probability represents probability values we observe when performing experiments or surveys.

In other words, these values can be obtained from the observed dataset. For example, in Count1, the

empirical probability of 0 equals the number of times 0 is observed divided by n1, which is the total number

of observations in the passage. Let fk be the number of times an value k is observed and n be the total

number of trials, then the formula to calculate this is

EPk =
fk
n

with fk = #{xj = k}.
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Then, we also have the model-based probabilities for Count1. Model-based probabilities are the proba-

bility values produced by applying the models on the dataset. Thus, we have five model-based probability

graphs relative to five statistical models we mentioned. The general formula for this is f(x|θ̂) where θ̂ rep-

resents the maximum likelihood estimators of the models. For example, for the binomial distribution, let p̂j

denote the MLE of the success probability pj in model. Then

fj(x|p̂) =
(
Nj

x

)
(p̂j)

x(1− p̂j)
Nj−x with x = 0, 1, ..., Nj .

The figure below shows the empirical probabilities and model-based probabilities for various distributions

calculated for the Count1 data.

Figure 1: Empirical probabilities of each observation in Count1

Generally, the closer the overall trend of values in the model-based probability models to the empirical

graph, the more accurate the statistical distribution is. Here, observe that the zero-inflated and beta-binomial

models share a similar trend as the empirical one as there was a significant drop from 0 to 1 and a decreasing

trend on the rest of the values. Tentatively, we suspect that the beta-binomial, zero-inflated Poisson, and

zero-inflated binomial distribution models may give us the best results, i.e. better parameter estimators.

Next, this will be more formally investigated using a tool called the Akaike Information Criterion (AIC).

6



2.3 The Akaike Information Criterion

A formal tool to assess how well the model fits the data we have is to use the Akaike Information Criterion

(AIC), which follows the formula of

AIC = 2k − 2 ln L̂

with k the number of estimated parameters in the model and L̂ the maximum value of the likelihood function

for the model. In other words, L̂ is the log-likelihood function evaluated at the MLEs. AIC attempts to

avoid overfitting by penalizing methods with a large number of parameters. Based on the AIC score, we can

determine which distribution is best-suited. A smaller AIC score represents a better model fit.

Table 1 reports the AIC scores when fitting the five statistical distributions to each passage using maximum

likelihood. For each passage, the minimum AIC value is printed in bold. AIC should be interpreted in a

relative sense. This means the minimum value may not correspond to the true distribution, but indicates

which distribution is the most suited out of those considered.

Model Distribution Count 1 Count 2 Count 3 Count 4 Count 5 Count 6 Count 7 Count 8 Count 9 Count 10
Poisson 134.8 186.9 255.0 145.5 193.3 210.8 215.6 211.3 183.5 246.1
Binomial 135.2 186.2 259.0 143.9 195.4 211.5 218.1 213.3 183.9 250.8
Beta-Binomial 132.2 175.7 201.2 143.0 170.0 187.3 167.5 180.3 159.8 189.9
Zero-inflated Poisson 128.8 180.0 236.1 143.3 191.4 200.6 185.7 197.8 174.5 218.5
Zero-inflated Binomial 128.6 180.7 240.9 143.4 195.0 202.5 188.4 200.7 176.1 223.0

Table 1: AIC scores for all five models being considered

With the AIC number we have for each model from table 1 , the beta-binomial distribution model almost

always has the smallest AIC scores compared to the other models. In particular, in nine out of ten available

passages, the beta-binomial model performs better than others. The one exception is the first passage where

the zero-inflated models yield smaller results. However, all other AIC scores are close to one another in

Count1, suggesting little difference between the model performances for this passage.

Maximum likelihood estimation relies on the independence of the passages. This means the estimated

parameters for one passage are found independently of the parameters of any other passage. However, since

all of the passages were created to be similar in the level of difficulty, parameter values should not be too far

away from each other. Thus, in order to bring this kind of structure to the parameter estimation process, we

use the penalization shrinkage method. Specifically, a penalty function is used to shrink parameter values

closer to one another or meet certain “conditions” and the method is called penalized maximum likelihood

estimation.
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3 Shrinkage through Penalized Likelihood Methods

3.1 Penalized Maximum Likelihood Estimation

Penalized maximum likelihood estimation is a method that allows for the possibility of achieving greater

overall accuracy in parameter estimation by allowing for the potential of bias. Intuitively, unbiased estimators

are seen as ”good”. However, if we use MSE as criterion, then we must balance a trade-off between bias and

variance.

As we previously noted, the passages in ORF assessment are generally designed to be comparable in diffi-

culty level. Passages are also designed to not be overly challenging for proficient readers. These two passage

properties can be incorporated in the estimation of WRI proportions using penalty functions. Specifically,

penalty functions are considered that encourage the estimated passage-specific WRI proportions to be close

to one another and/or close to zero. The use of parameter shrinkage is further motivated by a small sample

size per passage relative to the number of passages. In the next section, we will give a brief overview of some

of the topics that have been considered in the literature related to penalized maximum estimation.

3.2 Literature Review

There is, of course, a rich literature on parameter shrinkage in various statistical models. One of the earliest

examples is the James-Stein estimator of the mean, see Stein et al. (1956). This estimator is often described

as “borrowing” information between variables to obtain a more efficient estimator.

One of the most frequently encountered applications of shrinkage is in regression models with a large

number of predictor variables. The lasso, developed by Tibshirani (1996), is one such technique which

revolutionized parameter estimation in generalized linear models (GLMs). The lasso shrinks regression pa-

rameters towards zero using an L1 penalty, resulting in predictors being “dropped” from the model by setting

the corresponding coefficients equal to zero. The lasso was predated by ridge regression using an L2 penalty,

see Hoerl and Kennard (1970). This approach can result in some regression coefficients being very close

to zero, but unlike the lasso does not eliminate potential predictor variables from the model altogether.

The monographs Gruber (2017) and Hastie et al. (2019) are very good resources for further exploration of

shrinkage in regression models.

In this thesis, the parameters of interest are success proportions (with a success being that a word

has been read incorrectly during an assessment). Shrinkage as applied to the estimation of proportions

has received limited attention in the literature. In the univariate case, (Lemmer, 1981b) considered three

different estimators for a binomial success probability, and Lemmer (1981a) proposed estimators of the type

wp̂ + (1 − w)p0 where p0 is an a priori guess. However, neither of these papers consider likelihood-based

methods nor provide guidance on selecting the amount of shrinkage. Hansen (2016) considered three shrinking

approaches, namely restricted maximum likelihood, an efficient minimum distance approach, and a projection

approach. However, the work of Hansen requires the specification of a “shrinkage direction”, which is similar
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to the selection of a penalty function.

3.3 Penalty Functions

In this section, we explore the use of penalty functions in a general setting. Assume we observe a sample

of X1, X2, ..., Xn from a population with a parameter of interest is θ. The parameter θ can have different

meanings, such as a population average, population variance, or population proportion, etc. Let θ̂ be an

estimate of θ. We can decide if θ̂ is a good estimator based on two criteria: (1) unbiasedness and (2) small

variance of the estimated values. When given multiple unbiased estimators, it is sensible to choose the ones

with smallest variance. However, when comparing an unbiased and biased estimator, the decision is less

clear. Take a look at the Mean Squared Errors (MSE) formula,

MSE = E[(θ̂ − θ)2] = V ariance+Bias2

The MSE measures the closeness of the estimated value to the original value. Generally, bias-variance tradeoff

theory states that a reduction in the variance of an estimator is associated with an increase in the bias and

vice versa. In other words, we can sometimes find a biased estimator that has a smaller MSE than an unbiased

estimator. In this thesis, the introduction of (possible) bias is done by using penalty functions.

Given observed data x1, x2, x3, ..., xJ . Let l(θ) be the log-likelihood function and h(θ) the penalty function.

Next, we aim to minimize the penalized log-likelihood function

D(θ) = −l(θ) + λh(θ)

for some optimal value of λ, a constant that determines how aggressively the penalty is enforced.

The minimum of D(θ) is known as a penalized likelihood estimation. This section gives a couple of

examples to demonstrate the idea.

Example 2. Consider using the penalty function of h(θ) =
∑J

j=1 log(1 − pj) that potentially bring the

parameters close to 0. We illustrate here the penalized estimators for a binomial model. Let xj ∼ Bin(Nj , pj)

the likelihood function of binomial distribution.

L =

J∏
j=1

(
Nj

xj

)
p
xj

j (1− pj)
Nj−xj

Then, the log-likelihood function is:

l(p) =

J∑
j=1

log

(
Nj

xj

)
+

J∑
j=1

xj log(pj) +

J∑
j=1

(Nj − xj) log(1− pj).
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We then have

D(p) = −
J∑

j=1

log

(
Nj

xj

)
−

J∑
j=1

xj log(pj)−
J∑

j=1

(Nj − xj) log(1− pj) + λ

J∑
j=1

log(1− pj).

We take the partial derivatives of D(p) and set these equal to 0:

dD(p)

dp1
= −x1

p1
+

N1 − x1

1− p1
− λ

1− p1
= 0

⇔ −x1(1− p1) + p1(N1 − x1)− λp1
p1(1− p1)

= 0

⇔ −x1(1− p1) + p1(N1 − x1)− λp1 = 0

⇔ −x1 +N1p1 − λp1 = 0

⇔ −x1 + p1(N1 − λ) = 0

⇔ p̃1 =
x1

N1 − λ

Further, notice that the estimated probability cannot exceed 1, we have

p̃1 =


x1

N1 − λ
, if λ < N1

1, otherwise

Similar results hold for p̃2, p̃3,..., p̃J .

Example 2 above illustrates shrinkage of the estimated probabilities closer to 1. In example 3 below, we

illustrate a different kind of penalty. Specifically, we consider shrinking all probabilities to a common value

κ ∈ (0, 1).

Example 3. Penalized Estimators for Binomial Distribution Model with a different penalty function of

h(p) =

J∑
j=1

(κlog(pj) + (1− κ) log(1− pj)).

The log-likelihood function, similar to example 2, is

l(p) =

J∑
j=1

log

(
Nj

xj

)
+

J∑
j=1

xj log(pj) +

J∑
j=1

(Nj − xj) log(1− pj)

Combining the log-likelihood and the penalty, we have

D(p) = −
J∑

j=1

log

(
Nj

xj

)
−

J∑
j=1

xj log(pj)−
J∑

j=1

(Nj − xj) log(1− pj)− λ

J∑
j=1

(κ log(pj) + (1− κ) log(1− pj))

10



Thus, taking derivative of D(p) with respect to p1, we obtain

dD(p)

dp1
= −x1

p1
+

N1 − x1

1− p1
− λK

p1
+

λ(1− κ)

1− p1

=
−x1 − κλ

p1
+

(N1 − x1) + λ(1− κ)

1− p1
.

Setting this gradient equal to 0, we get

⇔ −x1 − κλ+ x1p1 + κp1λ+N1p1 − x1p1 + λp1 − κp1λ = 0

⇔ −x1 − κλ+N1p1 + λp1 = 0

⇔ p1(N1 + λ) = x1 + κλ

⇔ p̃1 =
x1 + κλ

N1 + λ

⇔ p̃1 =
x1

N1

N1

N1 + λ
+ κ

λ

N1 + λ

⇔ p̃1 = p̂1
N1

N1 + λ
+ κ

λ

N1 + λ

Similarly, p̃j = p̂j
Nj

Nj+λ + κ λ
Nj+λ for all j. Let wj =

Nj

Nj+λ , we can rewrite p̃j as p̃j = p̂jw1 + κ(1− w1). The

penalized solution is therefore expressed as a linear combination of the MLE and the value κ.

There is no specific rules on how to choose an appropriate penalty functions. Usually, we can specify

multiple penalty functions that implement similar constraints. It is therefore reasonable to choose one that

has nice calculus properties since our solutions involve evaluating gradients for easier minimization. However,

things get more complicated when we must also select a good value for λ. In chapter 4, we consider data-driven

methods to find the optimal λ.

Example 4: Shrinking normal means.

We illustrate another example of shrinkage and consider the Normal means problem. Let Xj ∼ N(µj , σ
2
j ),

j = 1, . . . , n be independent variables with unknown means µj and known variances σ2
j . Assume µ =(

µ1 µ2 · · · µn

)⊤
. The log-likelihood function (ignoring the constant of proportionality that doesn’t

depend on the unknown parameters) is

ℓ(µ) = −1

2

n∑
j=1

(
Xj − µj

σj

)2

.

Now, say we want to apply shrinkage forcing the means to be “close” to one-another using penalty

Pen(µ) =

n∑
j=1

n∑
k=1

(µj − µk)
2.
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The corresponding penalized minimization problem is

D(µ) = −ℓ(µ) +
λ

4
Pen(µ) =

1

2

n∑
j=1

(
Xj − µj

σj

)2

+
λ

4

n∑
j=1

n∑
k=1

(µj − µk)
2

where λ/4 is a specified constant (and we divide by 4 for convenience reasons that will become clear in a

moment). The score functions are obtained by taking partial derivatives and setting equal to 0. For example,

we have
∂D

∂µ1
= − 1

σ2
1

(X1 − µ1) + λ

n∑
k=2

(µ1 − µk) = 0

which can be written as [
1

σ2
1

+ λ(n− 1)

]
µ1 − λµ2 − · · · − λµn =

1

σ2
1

X1.

and this can be written as (
1

σ2
1

+ λ(n− 1) −λ · · · −λ

)
µ =

1

σ2
1

X1.

In general, if we define Lj as the row vector with jth element 1/σ2
j + λ(n− 1) and all other elements −λ

then for the jth variable we have

∂D

∂µj
= − 1

σ2
j

(Xj − µj) + λ
∑
k ̸=j

(µj − µk) = 0

which can be written as

Ljµ =
1

σ2
j

Xj .

If we now defineL to be the n×nmatrix with jth row equal toLj , and we define X̃ =
(
X1/σ

2
1 · · · Xn/σ

2
n

)⊤
then combining the n score equations gives

Lµ = X̃

so that the penalized solution is for a given value of λ is

µ̂λ = L−1X̃.

Now it is of interest to find a closed-form expression for L−1, which will lead to a closed-form expression for

µ̂λ. Note that L can be written as

L =


σ−2
1 + nλ 0 · · · 0

0 σ−2
2 + nλ · · · 0

. . . . . .
. . . . . .

0 0 · · · σ−2
n + nλ

−


λ λ · · · λ

λ λ · · · λ

. . . . . .
. . . . . .

λ λ · · · λ

 .

12



This representation is convenient when recalling the Sherman-Morrison inverse formula which states that

(A+ uv⊤)−1 = A−1 − 1

1 + v⊤A−1u
(A−1uv⊤A−1).

with

A =


σ−2
1 + nλ 0 · · · 0

0 σ−2
2 + nλ · · · 0

. . . . . .
. . . . . .

0 0 · · · σ−2
n + nλ

 ,

and u =
(
−λ1/2 −λ1/2 · · · −λ1/2

)⊤
while v = −u. The above formula can be applied directly. A is

diagonal, so the inverse is given by

A−1 =


σ2
1/(1 + σ2

1nλ) 0 · · · 0

0 σ2
2/(1 + σ2

2nλ) · · · 0

. . . . . .
. . . . . .

0 0 · · · σ2
n/(1 + σ2

nnλ)

 .

Now,

v⊤A−1u =
(
λ1/2 · · · λ1/2

)

σ2
1/(1 + σ2

1nλ) 0 · · · 0

0 σ2
2/(1 + σ2

2nλ) · · · 0

. . . . . .
. . . . . .

0 0 · · · σ2
n/(1 + σ2

nnλ)



−λ1/2

· · ·

−λ1/2



= −λ

n∑
k=1

σ2
k

σ2
k + nλ

.

From this,

1

1 + v⊤A−1u
=

(
1− λ

n∑
k=1

σ2
k

σ2
k + nλ

)−1

:= cλ.

Furthermore, adopting the shorthand

wk =
σ2
k

σ2
k + nλ

,

13



we have

A−1uv⊤A−1 =


w1 0 · · · 0

0 w2 · · · 0

. . . . . .
. . . . . .

0 0 · · · wn



−λ · · · −λ

. . .
. . . . . .

−λ · · · −λ



w1 0 · · · 0

0 w2 · · · 0

. . . . . .
. . . . . .

0 0 · · · wn



= −λ


w2

1 w1w2 · · · w1wn

w1w2 w2
2 · · · w2wn

. . . . . .
. . . . . .

w1wn w2wn · · · w2
n

 .

Finally, this means L−1 has diagonal elements

(L−1)ii = wi(1 + cλλwi)

and when i ̸= j,

(L−1)ij = cλλwiwj .

The penalized estimators of the mean values are subsequently given by

µ̃i = wi(1 + cλλwi)Xi/σ
2
i +

∑
j ̸=i

cλλwiwjXj/σ
2
j

= wi(1 + cλλwi)Xi/σ
2
i +

n∑
j=1

cλλwiwjXj/σ
2
j − cλλw

2
iXi/σ

2
i

=
1

σ2
i + nλ

Xi + cλλwi

n∑
j=1

1

σ2
j + nλ

Xj .

This last expression formulates the solution in terms of Xi and a weighted sum of all the observations.

4 Data-driven Shrinkage

In Section 3.3, examples of different penalized likelihood estimators were illustrated. However, in the pre-

sentation, the value of the parameter λ was assumed known. As λ controls the relative importance of the

penalty function, it is important to choose a value resulting in parameter estimates with small MSE. Note

that MSE cannot be calculated in practice as the true parameter values are unknown. Here, we discuss an

alternative selection approach known as V-fold cross-validation (VFCV).

Consider an dataset consisting of I independently sampled variables, with the ith variable consisting of

ni independent observations. Let xi = (xi1, xi2, . . . , xini
) denote the observations corresponding to the ith

variable. VFCV proceeds by partitioning the data into V subsets of roughly equal size. For the ith variable,

14



let Ii,v, v = 1, . . . , V denote a partition of the indices such that
⋃

v Ii,v = {1, . . . , ni} and Ii,v1
⋂
Ii,v2 = ∅

for all v1 ̸= v2.

VFCV repeatedly creates subsets of the data for model training, in each instance leaving out one of the

V subsets per variable. The subsets left out in each iteration are then used for model validation. More

specifically, the model building data subsets are used to estimate penalized parameter estimates for various

degrees of penalty enforcement, say K possible values of λ satisfying 0 = λ1 < λ2 < · · · < λK . The negative

log-likelihood function is then evaluated using penalized estimators corresponding to each possible value of λ

and using the validation subsets. This is repeated V times, and the optimal value of λopt is chosen as where

the negative log-likelihood function averaged over the validation subsets is minimized.

Algorithmically, implementation of VFCV proceeds as follows. For each fold v = 1, . . . , V :

• For the ith variable, form a training dataset by excluding the vth fold, x
(v)
train,i = {xij : j ̸∈ Ii,v}, and

let the vth fold equal to the validation set, x
(v)
valid,i = {xij : j ∈ Ii,v}. Let n

(v)
i denote the number of

observations in x
(v)
train,i. Also let x

(v)
train and x

(v)
valid denote the collection of the training and validation

sets for all I variables.

• For each value 0 = λ0 < λ1 < . . . < λK , find the estimators θ̃
(v)
train(λk) that minimize the penalized

negative log-likelihood function

Dk(θ) = −l
(
θ
∣∣∣x(v)

train

)
+ λkn̄

(v)Pen(θ)

where n̄(v) = (1/I)
∑

i n
(v)
i .

• Calculate the validation function by evaluate the negative log-likelihood at this estimator,

D̃(v)(λk) = −ℓ
(
θ̃
(v)
train(λk)

∣∣∣x(v)
valid

)
.

The VFCV score is then defined as

CVk = CV(λk) =

V∑
v=1

D̃(v)(λk), (1)

and the optimal shrinkage level is taken to be the λ that minimizes CVk, i.e. λopt = λk∗ where k∗ =

argminkCVk. Note that after the optimal penalty level has been chosen using VFCV, penalized estimators

are calculated one more time using the full dataset. The penalized likelihood estimator with data-driven

shrinkage, denoted θ̃pen, is the value that minimizes

Dopt(θ) = −ℓ(θ|x) + λoptn̄Pen(θ)

where n̄ = (1/I)
∑

i ni. The literature on cross-validation recommends various choices for V , with common
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values ranging from V = 2 to V = 10. The choice V = n is equivalent to leave-one-out cross-validation and

can become computationally expensive. As discussed in (Arlot and Celisse, 2010), the size of the validation

set has an effect on the bias of the penalized estimator, while the number of folds V controls for the variance

of the estimated penalization parameter. These authors also discuss some asymptotic considerations of

cross-validation. If ntrain denotes the size of the training set, then for ntrain/n → 1, cross-validation is

asymptotically equivalent to Mallows’ Cp and therefore asymptotically optimal. Furthermore, if ntrain/n →

γ ∈ (0, 1), then asymptotically the model is equivalent to Mallows’ Cp multiplied by (or over-penalized by) a

factor (1 + γ)/(2γ). Asymptotics notwithstanding, throughout the remainder of this paper, V = 10 is used.

This strikes a balance having larger training sets and reasonable computational costs.

5 Simulation Studies

In this chapter, the performance of shrinkage estimation is considered both for the binomial model as well as

two related models, the zero-inflated binomial and the beta-binomial. The reason we consider the binomial

model is that our data consists of success and failure counts, i.e. reading incorrectly versus correctly. Moreover,

the zero-inflated binomial and beta-binomial models tackle issues arisen with count data with many 0s, such

as unbalanced and skewed results. The simulation studies also consider whether the model estimation is

improved by using penalization. In most scenarios investigated here, no closed-form solutions for the penalized

estimators are available. Even so, these simulation studies are very useful for investigating the properties

of different penalty functions as they impact estimation for the three models. Note that simulations are

restricted here to I = 10 independent variables, each consisting of N = 40 trials and having n = 50

independent observations per variable. This choice was made so that the simulations would, at least in part,

closely resemble the real data motivating this work.

5.1 The Binomial Model

A sample X = {Xij , i = 1, . . . , I, j = 1, . . . , n} was generated with independent observationsXij ∼ Bin(N, pi)

with I = 10, N = 40, and n = 50. The binomial success probabilities pi were sampled from different scaled

beta distributions. Specifically, for success probability lower and upper bounds a and b, three shapes of the

success probability distribution were considered, namely a skewed distribution (pi − a)/(b− a) ∼ Beta(2, 5),

a very flat distribution (pi − a)/(b − a) ∼ Beta(5/4, 5/4), and a bell-shaped distribution (pi − a)/(b − a) ∼

Beta(10, 10). The three success probability distributions are illustrated in Figure 2 below. The λ term

controlling how aggressively the penalty gets enforced was chosen using cross-validation using 63 possible

values ranging from 0 to 10, 000 spaced approximately equi-distant on a logarithmic scale. VFCV was used

to determine the λ for each penalty function under consideration.

16



a (a+b)/2 b
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Figure 2: Success probability distributions considered in the simulation study.

In addition to the estimators resulting from the use of different penalty functions, maximum likelihood

estimators were also calculated. In total, K = 500 samples were generated for each configuration of success

probability bounds (a, b) and Beta shape parameters. Summarized in the tables below are the Monte Carlo

estimates of the MSE ratios. For the kth sample Xk, let pk = (pk,1, . . . , pk,10) denote the true success probabil-

ities simulated from a specified scaled Beta distribution. Let p̂k denote the MLE and let p̃k denote a penalized

estimator found using VFCV. Define Sum of Squared Deviations MSD(q,p) = (1/I)
∑I

i=1

[
(qi − pi)

2
]
. Then,

the Monte Carlo MSE ratios are defined as

MSEPen =
(1/K)

∑K
k=1 MSD(p̃k,pk)

(1/K)
∑K

k=1 MSD(p̂k,pk)

where the subscript “Pen” emphasizes the specific penalty function used to obtain the estimators. An MSE

ratio less than 1 indicates superior performance of the penalized estimator. In Table 2, the results of shrinking

success probabilities closer to one another are presented. The penalties
∑I

i=1 p
2
i and

∑
i log pi from Section

2.1 were considered.

Penalty
pi ∈ (a, b) Shape L2 Q2

(0.01, 0.05) Skew 0.928 0.906
Flat 0.935 0.942
Bell 0.705 0.704

(0.08, 0.20) Skew 0.960 0.952
Flat 0.969 0.973
Bell 0.854 0.856

(0.31, 0.35) Skew 0.411 0.411
Flat 0.652 0.652
Bell 0.292 0.293

Table 2: MSE ratios comparing penalized parameter estimates to maximum like-
lihood when shrinking estimators closer to one another.
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In Table 2, the performance of the L2 and Q2 penalties is nearly indistinguishable. When shrinking

parameters closer to one another, large gains in efficiency are sometimes realized. This is especially notable

when the Beta shape from which the success probabilities are generated is bell-shaped, i.e. the pi are close to

one another. In all instances, VFCV results in penalized estimators with performance superior to maximum

likelihood. Altogether, these simulations illustrate that both the average success probability and the spacing

of the pi relative to that average are important in determining the reduction in MSE. For penalties shrinking

the pi closer to one another, an MSE ratios below 0.3 was realized, showing dramatic improvement due to

shrinkage.

5.2 The Beta-binomial Model

The probability mass function of the beta-binomial distribution is given by

f(x|N,α, β) =

(
N

x

)
B(x+ α,N − x+ β)

B(α, β)
, x = 0, 1, ..., N

where B(x, y) =
∫ 1

0
tx−1(1 − t)y−1dt is the Beta function and N is the number of trials. The parameters

α > 0 and β > 0 control the mean and variance of the model. Specifically, for p = α/(α + β) ∈ (0, 1)

and ν = (α + β + N)/(α + β + 1) ∈ (1, N), the mean and variance can be written as E[X] = Np and

V ar[X] = Np(1 − p)ν. In this parameterization, p and ν denote, respectively, the expected proportion of

successes and the the over-dispersion of the model relative to the binomial.

Samples X = {Xij , i = 1, . . . , I, j = 1, . . . , n} were generated with independent Beta-Binomial variables,

Xij ∼ BetaBin(N,αi, βi), with I = 10, N = 40, and n = 50. The overall expected success proportions pi and

the overdispersion νi were sampled from scaled beta distributions as per Figure 2 with the specific bounds

(a, b) listed in the table below. In this case, the BetaBin simulation considered three penalty functions.

Letting pi = αi/(αi + βi), i = 1, . . . , I, these were: Pen2(p) =
∑

i p
2
i , PenL2

(p) =
∑

i

∑
j(pi − pj)

2, and

Penfull(α,β) =
∑

i

∑
j(αi − αj)

2 +
∑

i

∑
j(βi − βj)

2. These are again termed, respectively, zero shrinkage,

mean shrinkage, and full shrinkage. Again, after choosing the λ shrinkage levels using VFCV, one final

estimator, termed minCV, was calculated by selecting among the three penalized estimators the one with

the smallest CV score.

For each parameter configuration, a total of M = 500 samples were generated. The MSE ratios are

reported in Table 3.
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Penalty
pi ∈ (a1, b1) νi ∈ (a2, b2) Shape Zero Mean Full minCV
(0.05, 0.10) (4, 6) Skew 0.917 0.474 0.428 0.429

Flat 0.928 0.702 0.591 0.604
Bell 0.921 0.290 0.270 0.271

(0.12, 0.22) (2, 5) Skew 0.974 0.722 0.726 0.708
Flat 0.977 0.903 0.948 0.889
Bell 0.973 0.476 0.466 0.463

(0.17, 0.22) (3, 8) Skew 0.971 0.301 0.400 0.331
Flat 0.971 0.445 0.762 0.481
Bell 0.968 0.217 0.242 0.227

(0.05, 0.06) (2, 10) Skew 0.905 0.170 0.469 0.211
Flat 0.891 0.188 0.733 0.213
Bell 0.893 0.155 0.187 0.175

Table 3: MSE ratios for Beta-Binomial success proportions p = (p1, . . . , p10)
comparing penalized parameter estimates to maximum likelihood for different
penalization approaches.

When looking at the results in Table 3, it comes as no surprise that zero shrinkage is the least effective

approach here, even while still being more effective than maximum likelihood. For most of the simulation

configurations, MSE ratios under mean and full shrinkage are comparable. Here, the minCV approach is

also very impressive, in most instances nearly matching the best-performing method. This reaffirms that

VFCV can be effectively used to choose both the level of shrinkage for a specific penalty function, but then

also choose from among competing penalty functions.

5.3 The Zero-inflated Binomial Model

The pmf of the zero-inflated binomial (ZIB) distribution is

f(x|N, q, γ) =


γ + (1− γ)(1− q)N when x = 0

(1− γ)

(
N

x

)
px(1− q)N−x when x = 1, . . . , N

where γ represents the excess zero probability, and p and N are the binomial success probabilities and

number of trials. For X ∼ ZIB(N, q, γ), it follows that E[X] = Nq(1 − γ). Consequently, the parameter

p = E[X]/N = q(1−γ) is the expected proportion of successes in a ZIB model. The parameter p is of primary

interest when considering possible penalty functions, especially under the assumption that the different ZIB

distributions are “similar” to one another.

In the simulation study, a sample X = {Xij , i = 1, . . . , I, j = 1, . . . , n} was generated with independent

ZIB variables, Xij ∼ ZIB(N, qi, γi). As with the binomial model simulation, I = 10, N = 40, and n =

50. The overall expected success proportions pi and the excess zero probabilities γi were sampled from

scaled beta distributions as per Figure 2 with the specific bounds (a, b) listed in the table below. Letting

pi = (1 − γi)qi, i = 1, . . . , I, the ZIB simulation considered three penalty functions: Pen2(p) =
∑

i p
2
i ,
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PenL2(p) =
∑

i

∑
j(pi − pj)

2, and Penfull(γ, q) =
∑

i

∑
j(γi − γj)

2 +
∑

i

∑
j(qi − qj)

2. The first of these,

termed zero shrinkage, results in success proportions closer to 0. The second, termed mean shrinkage, results

in mean success proportions pi closer to one another. The third, termed full shrinkage, shrinks all γi closer

to one another and all qi closer to one another.

In addition to using VFCV to select the level of shrinkage for the above three penalities, a combined

estimator, termed minCV, was calculated by selecting the model parameters associated with the penalty

function having minimum VFCV score. The same set of 63 λ values ranging from 0 to 10, 000 were used.

The Monte Carlo MSE ratios for the success proportions p are in Table 4.

Penalty
pi ∈ (a1, b1) γi ∈ (a2, b2) Shape Zero Mean Full minCV
(0.01, 0.05) (0.10, 0.14) Skew 0.957 0.888 0.981 0.958

Flat 0.977 0.942 0.979 0.983
Bell 0.964 0.668 0.836 0.755

(0.04, 0.06) (0.20, 0.30) Skew 0.968 0.364 0.368 0.356
Flat 0.971 0.562 0.526 0.523
Bell 0.968 0.258 0.246 0.239

(0.15, 0.30) (0.04, 0.06) Skew 1.006 0.969 0.860 0.885
Flat 1.010 1.005 0.808 0.819
Bell 1.009 0.821 0.873 0.899

(0.05, 0.06) (0.20, 0.70) Skew 0.963 0.203 0.635 0.273
Flat 0.955 0.223 0.934 0.259
Bell 0.951 0.183 0.372 0.245

Table 4: MSE ratios for ZIB success proportions p = (p1, . . . , p10) comparing
penalized parameter estimates to maximum likelihood for different penalization
approaches.

These MSE ratios in Table 4 are based on M = 500 simulated datasets for each possible simulation

configuration. While the zero shrinkage penalty does result in some efficiency gains in most scenarios, overall

MSE ratios close to 1 suggest little improvement from from using this penalty. On the other hand, both mean

and full shrinkage result in large decreases in the MSE ratios. Overall, it cannot be said that either mean

and full shrinkage performs best. This makes sense, as it depends on the configuration of all parameters

and not just the mean parameters. Finally, while minCV does not always have the smallest MSE ratio, it is

generally close to the minimum. This suggests that data-driven selection of the level of shrinkage as well as

the penalty function leads to good performance for the model.

6 Data Analysis and Findings

The work presented in this paper was motivated by the reading data collection a sample of 508 elementary-

school aged children. Each child read one randomly selected passage out of ten possible passages. This

resulted in roughly 50 Words Read Incorrectly (WRI) scores per passage. The passage lengths varied from

44 to 69 words with an average length of 51 words. Of interest is to accurately and efficiently estimate
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passage difficulty as measured by the average proportion of words read incorrectly. Note that higher WRI

proportions indicate that a passage is more difficult. Figure 3 provides information about the passage-specific

WRI proportions. The solid dot in each violin plot represents the mean WRI proportion, a typical estimate

of passage difficulty.

Figure 3: Violin plot comparison of passage WRI proportions

Note that the mean WRI proportions in Figure 3 appear fairly close to one another, meaning passages are

crafted to be within a narrow range of difficulty to reinforce fairness in grading and evaluation of students.

Thus, as one expects the WRI proportions to be close to one another, appropriate shrinkage may result in

improved estimates.

Three models and three types of shrinkage were considered for the data at hand. In each instance, the

same set of partitions were used to select a smoothing parameter with 10-fold cross validation. Table 5

reports the cross-validation scores as defined in (1).

Distribution Penalty CV Score log(λopt + 1)
Binomial None 1025.5 –

Zero 1024.9 3.56
Mean 1017.1 4.36

ZIB None 964.7 –
Zero 964.3 2.78
Mean 959.6 3.96
Full 950.4 3.56

BetaBin None 869.7 –
Zero 869.5 2.41
Mean 866.3 3.56
Full 851.9 0.04

Table 5: 10-fold CV scores and optimal λ values for the three distributions con-
sidered.
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Maximum Likelihood Mean Shrinkage Full Shrinkage

Passage α̂ β̂ p̂ α̃ β̃ p̃ α̃ β̃ p̃
P1 1.28 66.34 0.019 1.20 52.67 0.022 0.70 27.45 0.025
P2 1.51 45.15 0.032 1.50 47.47 0.031 0.91 27.44 0.032
P3 0.84 19.85 0.040 0.80 22.81 0.034 0.96 27.44 0.034
P4 2.47 160.0 0.015 2.25 123.5 0.018 0.67 27.45 0.024
P5 1.17 42.54 0.027 1.17 41.65 0.027 0.83 27.45 0.030
P6 1.18 29.10 0.039 1.13 32.52 0.034 0.97 27.44 0.034
P7 0.53 19.48 0.026 0.53 18.75 0.027 0.74 27.44 0.026
P8 0.87 25.37 0.033 0.86 27.20 0.031 0.88 27.44 0.031
P9 0.85 32.25 0.026 0.84 30.74 0.027 0.79 27.45 0.028
P10 0.65 17.03 0.037 0.63 19.14 0.032 0.89 27.44 0.031

Table 6: Beta-binomial parameter estimates for the WRI data.

It is evident from Table 5 that all variations of the beta-binomial model have much lower cross-validation

scores than either the binomial or zero-inflated binomial models. With regards to penalty type, full shrinkage

works best for this model with mean shrinkage being a distant second choice. Table 6 shows the beta-binomial

parameter estimates obtained using maximum likelihood as well as penalized likelihood with mean shrinkage

and full shrinkage. It is interesting to note that in the full shrinkage solution, the β̃i values have all been

shrunk to within 0.01 of a common value, but the α̃i still exhibit a fair spread of values. In the maximum

likelihood sense, the estimated success proportions range from 0.019 to 0.04, while the full shrinkage values

range from 0.024 to 0.034. The latter shows much more adherence to the idea that the passages are similar

in terms of difficulty.
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Figure 4: Beta-binomial parameter estimates under mean shrinkage and full
shrinkage. Dashed line indicates optimal shrinkage. Scale value to improve full
shrinkage plot readability is ε = e−10.

For the interested reader, Figure 4 shows the penalized likelihood estimate trajectories for mean shrinkage

and full shrinkage as a function of λ. The estimates of β̃ are presented on a logarithmic scale. For mean

shrinkage, the horizontal scale is log(λ + 1) and for full shrinkage it is log(λ + ε) with ε = 10−10. These

adjustments were all made to improve readability of the plots. Dashed vertical lines indicate the optimal

shrinkage solutions as determined by VFCV.

Under mean shrinkage, the passage-specific α̃i and β̃i still exhibit a large spread even when the success

proportions p̃i = α̃i/(α̃i + β̃i) are close to one another. Under full shrinkage, the β̃i values are very quickly

shrunk to a nearly common value while the α̃i still exhibit some spread.

7 Conclusions

The goal of this project is to consider various statistical models for WRI data. After evaluating 5 potential

models in chapter 2 using maximum likelihood, the beta-binomial and zero-inflated binomial appears to

23



have the best performance when considering AIC. However, standard maximum likelihood does not allow

for sharing of information across passages. Because we believe that passages are similar in difficulty, we

next consider penalized estimation of multiple independent success proportions from the observed multi-

variable count data. In chapter 3, a few examples of shrinkage are given. In chapter 4, we demonstrate how

cross-validation can be used.

The application of interest considered WRI scores realized by students during an ORF assessment. The

simulation results in chapter 5 show that across the scenarios considered, large decreases in MSE are often

achieved. There is also very little risk in using penalized likelihood, as using V-fold cross validation never

resulted in a large increase in MSE. When applying the methodology to the data of interest in chapter 6, it

is seen that the resulting penalized estimators of the success proportions have a much tighter spread. This

affirms the expectation that the passages are very similar in difficulty, with estimated difficulty scores ranging

from 2.4% to 3.4% of words expected to be read incorrectly. Even so, this does highlight one important avenue

for future research. If students are reading different passages to assess ORF, it is desirable to have a method

that standardizes WRI scores to be independent of passage difficulty. Also, in practice students typically

read multiple passages, so exploring methods accounting for correlated WRI scores need to be considered.
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