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ABSTRACT
The paper considers parameter estimation in count data models using penalized likelihood methods. The
motivating data consists of multiple independent count variables with a moderate sample size per variable. The
data were collected during the assessment of oral reading fluency (ORF) in school-aged children. A sample of
fourth-grade students were given one of ten available passages to read with these differing in length and difficulty.
The observed number of words read incorrectly (WRI) is used to measure ORF. Three models are considered for
WRI scores, namely the binomial, the zero-inflated binomial, and the beta-binomial. We aim to efficiently estimate
passage difficulty, a quantity expressed as a function of the underlying model parameters. Two types of penalty
functions are considered for penalized likelihood with respective goals of shrinking parameter estimates closer to
zero or closer to one another. A simulation study evaluates the efficacy of the shrinkage estimates using Mean
Square Error (MSE) as metric. Big reductions in MSE relative to unpenalized maximum likelihood are observed.
The paper concludes with an analysis of the motivating ORF data.

ARTICLE HISTORY
Received 4 November 2021
Accepted 10 July 2022

KEYWORDS
Count data models, cross-validation, empirical success probability, parameter shrinkage, penalized maximum
likelihood

MATHEMATIC SUBJECT CLASSIFICATIONS
62P15, 62F10

1. Introduction

The definition of Oral Reading Fluency (ORF) is ‘the oral translation of text with speed and accuracy,’ see
for example Fuchs et al. [9] and Shinn et al. [28]. Reading fluency is a skill developed during childhood that
is needed to understand the meaning of texts and literary pieces. There is a strong correlation between
reading fluency and reading comprehension, see Allington [2], Johns and Lunn [17], Samuels [26], and
Schreiber [27]. According to DiSalle and Rasinski [7], once a student has identified a word and read it
correctly, their focus generally shifts from word recognition (attempting to recognize the word) to
comprehension (making meaning of the word). This leads to overall understanding of the text. These authors
have claimed that incompetent ORF levels are the cause of up to 90% of reading fluency issues. If a child
does not read fluently, their ability to read comprehensively is also hindered and they will have trouble in
grasping the meaning of texts. Thus, ORF is a method of evaluating whether a child is at their appropriate
reading level compared to their peers and assists in identify at-risk students with poor reading skills.

In this paper, we analyze ORF data collected from a sample of 508 fourth-grade students. Each child was
given one of ten available passage to read and the number of words read incorrectly (WRI) was recorded.

CONTACT Cornelis J. Potgieter c.potgieter@tcu.edu
© 2022 Informa UK Limited, trading as Taylor & Francis Group

https://doi.org/10.1080/02664763.2022.2103101
https://orcid.org/0000-0002-1995-6817
https://orcid.org/0000-0001-9570-1464
mailto:c.potgieter@tcu.edu


8/29/22, 10:59 AM Penalized likelihood methods for modeling count data

https://www.tandfonline.com/doi/epub/10.1080/02664763.2022.2103101?needAccess=true 2/18

This resulted in around 50 WRI measurements per passage. Reading sessions were recorded so that observer
error in counting the number of words read correctly and incorrectly could be eliminated. The WRI scores
were obtained from these recorded sessions and are assumed free of measurement error. Strong readers tend
to have low WRI scores and weak readers tend to have high WRI scores. However, as the passages are not
all equal in difficulty, it is important to be cautious in directly using WRI scores obtained from different
passages to measure overall ORF levels in a classroom setting.

Our work is motivated by noting that, to the best of our knowledge, ORF assessment in practice neither
makes any adjustments to account for variations in passage difficulty nor quantifies the differences in
passage difficulty. Instead, in implementation a student is given one minute to read as many words as
possible in a 250 word passage, after which an assessor calculates their words correct per minute (WCPM)
score by subtracting the number of words read incorrectly from the total number of words read. This WCPM
score does not make adjustments for passage difficulty and is currently still the most prevalent measure used
to assess ORF, see Miura Wayman et al. [21], Fuchs et al. [9], and Hasbrouck and Tindal [13].

The statistical novelty of this work stems from the use of penalized maximum likelihood to estimate
parameters in a count data setting where the counts are naturally bounded (below by 0 and above by passage
length). Penalty functions are used to ‘encourage’ estimated passage-specific parameters to be close to one
another and/or close to zero. This particular implementation of parameter shrinkage is motivated by the
structural properties of the data. Firstly, the passages in an ORF assessment differ with respect to vocabulary
used and how sentences are constructed. It follows that the passages naturally vary in difficulty, although
they are designed to be comparable. Secondly, passages are designed to not be overly challenging for
proficient readers, meaning that it is fairly common to have WRI scores of 0. Finally, passage-specific
sample sizes are small relative to the number of passages.

There is, of course, a rich literature on parameter shrinkage in various statistical models. One of the
definitive examples in the multivariable setting is the James-Stein estimator of the mean, see Stein [29]. This
estimator is often described as ‘borrowing’ information between variables to obtain a more efficient
estimator. Other applications of shrinkage include Pandey and Upadhyay [22] and Jani [16] who considered
univariate Bayes-type shrinkage in, respectively, a Weibull distribution and an exponential distribution. In
the bivariate setting, shrinkage was used to estimate probabilities of the form  for underlying
exponential distributions, see Baklizi and Abu Dayyeh [4].

One of the most frequently encountered applications of shrinkage is in regression models with a large
number of predictor variables. The lasso, developed by Tibshirani [30], is one such technique which
revolutionized parameter estimation in generalized linear models (GLMs). The lasso shrinks regression
parameters towards zero using an  penalty, resulting in predictors being ‘dropped’ from the model by
setting the corresponding coefficients equal to zero. The lasso was predated by ridge regression which uses
an  penalty, see Hoerl and Kennard [15]. This approach results in some regression coefficients being very
close to zero, but does not eliminate potential predictor variables from the model altogether. Other examples
of shrinkage applied to GLMs include Månsson [20] and Qasim et  al. [25] who developed Liu-type
estimators for, respectively, a zero-inflated negative binomial regression model and a Poisson regression
model. Shrinkage estimation of fixed effects in a random-effects zero-inflated negative binomial model was
considered by Zandi et  al. [31]. The monographs by Gruber [11] and Hastie et  al. [14] are very good
resources for further exploration of shrinkage in regression models.

We would be remiss to not highlight the similarity of penalty-based frequentist estimation methods to
Bayesian methods with appropriately selected prior functions. For example, Efron and Morris [8] show how
the James-Stein mean estimator belongs to a larger class of empirical Bayes estimators. Similarly, as a
parallel to lasso regression, Park and Casella [23] define a Bayesian lasso for sparse regression estimation.
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For an overview of some of the recent developments in Bayesian regularization using hierarchical models,
see Polson and Sokolov [24].

In this paper, measures of passage-specific difficulty are of primary interest. The measure of difficulty
considered here is  with N the passage length. That is, define the proportion of words read
incorrectly in a passage as a measure of difficulty. The required expected value can be expressed as a
function of the underlying count data model parameters, meaning their estimation is of central importance.
Parameter shrinkage applied to count data models has received limited attention in the literature. In the
univariate case of estimating a binomial success probability, Lemmer [19] considered three different
estimators of p, while Lemmer [18] proposed estimators of the type  where  is an a
priori guess. However, neither of these papers consider likelihood-based methods nor provide guidance on
selecting the amount of shrinkage.

Our literature review brought a few papers to our attention that are similar in spirit, but consider
parameter estimation through shrinkage problem from fundamentally different perspectives. In the
frequentist paradigm, Hansen [12] considers three shrinking approaches – restricted maximum likelihood, an
efficient minimum distance approach, and a projection approach – for estimating model parameters. The
work of Hansen requires the specification of a shrinkage direction, which is similar to the selection of a
penalty function. In the Bayesian paradigm, Agresti and Hitchcock [1] consider hierarchical models for
estimating multinomial success probabilities and Datta and Dunson [6] consider estimating the intensity
parameter of quasi-sparse Poisson count data. The scarcity of relevant literature highlights the opportunities
available to further explore shrinkage estimation methods.

The remainder of this paper proceeds as follows. In Section 2, the penalized likelihood approach is more
fully developed, emphasizing the binomial distribution for clarity of exposition. In Section 3, V-fold cross-
validation is presented as a data-driven approach for selecting the shrinkage level. Section 4 presents results
from extensive simulation studies and the motivating data are analyzed in Section 5.

2. Shrinkage through penalized likelihood methods

2.1. Shrinkage through penalized likelihood estimation

Consider a collection of random variables , , , with the 
 mutually independent. Here,  denotes a distribution function with p-

dimensional parameter . Let  denote the parameter space associated
with the collection of parameters . Also let  denote the log-likelihood of the
data  and let  denote a specified subset of the parameter space that is of interest. Finally, for 

, let  be a norm. We then define . That is, 
is the shortest distance between a point  and the space  as measured by the norm h. Note that whenever 

, the point  is closer to the region  than the point .
In this context, parameter shrinkage is said to be any estimation method that balances adherence to the

data-generating model as measured by  and the closeness of any estimator to  as measured by 
. One such approach is penalized maximum likelihood. Adopting the convention that 

 denote the penalty function, the penalized likelihood estimator  is found by
minimizing

(1)

with  a specified constant. The two component functions of  often exist in some kind of tension;
minimizing  gives the maximum likelihood estimator (MLE), while  attains a minimum
for any  in  where the desired parameter constraint is fully satisfied. The tension can be ascribed to the
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MLE not necessarily being close to the subset of interest . The magnitude of λ determines the balance
between these at times competing interest.

Calculation of the penalized likelihood estimator  requires the specification of a generating model, a
penalty function, and a value for the parameter λ. Throughout this paper, generating models closely related to
the binomial distribution are considered. All models considered naturally accommodate counts restricted to
the set . The remainder of Section  2 will consider some possible choices of the penalty
function while assuming λ is known, with the choice of λ discussed in Section 3. Note that when it comes to
the selection of a penalty function, it will often be the case that the subject-matter expert presents the
statistician with a non-mathematical description of . There may be multiple ways of constructing a set 

 and a penalty function  that satisfies the description. Therefore, the penalty functions considered
in this paper should not be considered an exhaustive enumeration of the possibilities. Rather, these are
intended to illustrate the many ways in which shrinking can be implemented.

2.2. Shrinkage to zero in binomial models

Let ,  denote observed realizations of independent random variables , 
. Assume that the number of binomial trials  are known and that estimation of the success

probabilities , , is of interest. The log-likelihood is given by

Now, consider the hypothetical scenario where the subject-matter expert has expressed that the success
probabilities should all be ‘small.’ In the context of the WRI data, this is equivalent to expecting that only a
small proportion of words will be read incorrectly by a reader at grade-level. This is consistent with setting 

. There are numerous penalty functions that can assess the closeness of a potential
parameter value  to . For example, both the  and  norms

(2)

are candidates worth considering. In the context of binomial success probabilities, both of these functions are
bounded, having  Figure 1 visualizes these penalties for the case I 
= 2. The axes  and  range from 0 to 1 in the direction of the arrows. The value of the penalty function
itself is omitted from the plot as the magnitude is only informative up to a constant of proportionality. This
emphasizes that the goal here (and with other penalty functions graphs that follow) is only to illustrate the
shape of these functions.

https://www.tandfonline.com/reader/content/182de8763f2/10.1080/02664763.2022.2103101/format/epub/EPUB/xhtml/f0001.xhtml
https://www.tandfonline.com/reader/content/182de8763f2/10.1080/02664763.2022.2103101/format/epub/EPUB/xhtml/f0001.xhtml
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Note that as  for all , the  norm will more aggressively shrink
success probabilities to 0 than the  norm. Due to the resemblance of the  norm to the commonly-used
lasso penalty in regression, it should be pointed out that its application here will not result in shrinkage
estimators exactly equal to 0. In fact, the penalized negative log-likelihood function 

 has unique solution

where  and  is the unpenalized MLE. While it is not necessarily intuitive from the
form of the penalized estimator, it can easily be verified that  for all . The solution to
the  penalty function is also easy to compute, but no general closed-form expression is possible as it
requires solving a cubic polynomial.

The bounded nature of  and  in (2) may not appeal to some. One choice of an unbounded
penalty is

This penalty has a lower bound of 0, but has no upper bound. For an illustration when I = 2, see Figure 2.
The solution to the corresponding penalized likelihood problem is

None of the penalties considered so far have the lasso-like property of shrinking parameters to 0 for a finite
value of λ. However, it is possible to find a penalty that achieves this. Consider

also illustrated in Figure 2 for I = 2. This penalty function is bounded above, but has no lower bound as the
individual 's approach 0. In fact, this penalty function is not associated with a norm as defined in
Section  2.1, putting it somewhat outside the framework in which our estimation problem has been
formulated. The latter point notwithstanding, the corresponding penalized likelihood estimator is

for . Perhaps this penalty can appropriately be described as ‘greedy’ in the sense that it has the
potential to dominate the data and result in a shrinkage estimator equal to 0 even when there are observed
successes suggesting otherwise.

Figure 1.  norm (left) and  norm (right) penalty functions for J = 2 binomial success probabilities.

https://www.tandfonline.com/reader/content/182de8763f2/10.1080/02664763.2022.2103101/format/epub/EPUB/xhtml/f0002.xhtml
https://www.tandfonline.com/reader/content/182de8763f2/10.1080/02664763.2022.2103101/format/epub/EPUB/xhtml/f0002.xhtml
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All four of the penalized solutions above corresponding to some notion of success probabilities being
‘close to 0’ or ‘not too large.’ Figure 3 shows a schematic representation of the behavior of these estimators
as a function of .

2.3. Other shrinkage configurations

The penalized estimators of Section 2.2 all revolve around the goal of ensuring that the estimates  are
close to 0. If, on the other hand, it was desired to have estimates  close to 1, then by symmetry all of the
examples considered could replace the  in each of the penalty functions by . Of course, many other
types of penalties could also be of interest. For instance, consider the hypothetical example where a subject-
matter expert expresses confidence that all of the  should be close to some specified value . For
this specified κ, define

This penalty function has a minimum when all the  are equal to κ, and is unbounded above whenever one
of the  approach either 0 or 1. This penalty therefore shrinks the  towards the specified κ value. The
penalized estimators are

Figure 2. Penalties  (left) and  (right) penalty functions, respectively unbounded from above and below,
for I = 2 binomial success probabilities.

Figure 3. Schematic representation of four different penalized estimators shrinking  closer to 0.

https://www.tandfonline.com/reader/content/182de8763f2/10.1080/02664763.2022.2103101/format/epub/EPUB/xhtml/f0003.xhtml
https://www.tandfonline.com/reader/content/182de8763f2/10.1080/02664763.2022.2103101/format/epub/EPUB/xhtml/f0002.xhtml
https://www.tandfonline.com/reader/content/182de8763f2/10.1080/02664763.2022.2103101/format/epub/EPUB/xhtml/f0003.xhtml
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For the  variable, this estimator is a linear combination of the MLE and κ. The careful reader may also
notice that this estimator has much in common with the Bayesian estimator of a binomial success probability
with a beta prior. This example makes clear how the value of λ controls whether the strength of evidence lies
with the empirical estimator  or with the pre-specified reference κ. Similarly, say a subject-matter expert
states that the success probabilities should all be ‘close’ to one another, but without specifying a κ value. For
the WRI data, this is equivalent to requiring the  to be near one another using some appropriate distance
metric. For this, define the bounded penalty function

Alternatively, if an unbounded penalty function is preferred, one could use

where  is the standard normal quantile function. Neither of these penalties result in closed-form
solutions for the shrinkage estimators , .

3. Data-driven shrinkage

In Section  2, different penalty functions were considered for estimating I independent binomial success
probabilities assuming a known value of the shrinkage parameter λ. As λ controls the relative importance of
the penalty function, it is important to choose a value resulting in parameter estimates with small MSE. We
present here how V-fold cross-validation (VFCV) can be used for selecting an optimal shrinkage parameter.
While the VFCV approach is fully defined in this section, the interested reader can consult Arlot and Celisse
[3] for a more in-depth discussion of this method as well as other cross-validation approaches.

Consider a dataset consisting of I independently sampled variables, with the ith variable consisting of 
independent observations. Let  denote the observations corresponding to the ith
variable. VFCV partitions the data into V subsets of roughly equal size. For the ith variable, let , 

 denote a partition of the indices, such that  and 
 for all  with .

VFCV repeatedly creates subsets of the data for model training, in each instance leaving out one of the V
subsets per variable. The subsets left out in each iteration are then used for model validation. More
specifically, the model building data subsets are used to estimate penalized parameter estimates for various
degrees of penalty enforcement, say M possible values of λ satisfying . The
negative log-likelihood function for the validation data is then evaluated using penalized estimators
corresponding to each possible value of λ. The optimal value  is chosen to be the minimizer of the
negative log-likelihood function averaged over the validation subsets.

Algorithmically, implementation of VFCV proceeds as follows:

• For the  variable, form a training dataset by excluding the vth fold, 

, and let the vth fold equal to the validation set, 

. Let  denote the number of observations in . Also let 

 and  denote the collection of the training and validation sets for all I variables.

• For each value , find the estimators  that minimize the
penalized negative log-likelihood function
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where .

• Calculate the validation function by evaluate the negative log-likelihood at this estimator,

The above bullets are repeated for  and the VFCV score is defined as

(3)

The optimal shrinkage level is taken to be the minimizer of , i.e.  with 
. Note that after the optimal penalty level has been chosen using VFCV, penalized

estimators are calculated one more time using the full dataset. The penalized likelihood estimator with data-
driven shrinkage, denoted , is the minimizer of

where . The literature on cross-validation recommends various choices for V, with
common values ranging from V = 2 to V = 10. The choice V = n is equivalent to leave-one-out cross-
validation and can become computationally expensive. As discussed in Arlot and Celisse [3], the size of the
validation set has an effect on the bias of the penalized estimator, while the number of folds V controls for
the variance of the estimated penalization parameter. These authors also discuss some asymptotic
considerations of cross-validation. If  denotes the size of the training set, then for ,
cross-validation is asymptotically equivalent to Mallows'  and therefore asymptotically optimal.
Furthermore, if , then asymptotically the model is equivalent to Mallows' 
multiplied by (or over-penalized by) a factor . Asymptotics notwithstanding, throughout the
remainder of this paper, an approach of V = 10 is used. This strikes a balance between having larger training
sets and reasonable computational costs.

4. Simulation studies

In Section  2, various shrinkage estimators for the binomial distribution were considered. Of course, the
binomial model is not the only count model of interest. In this section, shrinkage estimation is considered for
the binomial model as well as two related models, the zero-inflated binomial and the beta-binomial. In most
scenarios investigated here, no closed-form solutions for the penalized estimators are available. Even so,
these simulation studies are very useful for investigating the properties of different penalty functions and
how they impact parameter estimation for the three models. Simulations are restricted to I = 10 independent
variables (passages), consisting of  trials (passage length) and having 
independent observations (students) for . This choice was motivated in large part by the
structure of the real data considered in this paper.

4.1. The binomial model

In the simulation, samples  were generated with independent
observations  and . The binomial success probabilities 
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were sampled from a scaled beta distribution. Three shapes of the success probability distribution were
considered, namely a skewed distribution , a very flat distribution 

, and a bell-shaped distribution 
. The three success probability distributions are illustrated in Figure 4.

When considering shrinkage to 0, we chose scaling parameters 
 and when considering shrinkage closer to one

another, we chose . In total, this makes for 18
simulation configurations: 3 distributions for the  types of shrinkage  choices of  for each
shrinkage type. The λ term controlling how aggressively the penalty gets enforced was chosen using cross-
validation using 63 possible values ranging from 0 to  spaced approximately equidistant on a
logarithmic scale. These λ values were selected (after some trial-and-error) to ensure they cover the spectrum
of negligible penalization ( ) through the penalty dominating ( ). VFCV was used to
choose the optimal λ for each simulated dataset. In addition to the penalized estimators, maximum likelihood
estimators were also calculated. In total, K = 500 samples were generated for each of the 18 simulation
configurations.

Summarized in the tables below are the Monte Carlo estimates of the MSE ratios. For the kth sample 
, let  denote the true success probabilities simulated from a specified scaled Beta
distribution. Let  denote the MLE and let  denote a penalized estimator found using VFCV. Define

Sum of Squared Deviations . The Monte Carlo MSE ratios are
subsequently defined as

where the subscript ‘ ’ emphasizes the specific penalty function used to obtain the estimators. Maximum
likelihood is often considered a ‘gold standard’ estimation method. Therefore, we do not report the estimated
MSE values themselves, but rather emphasize the MSE ratios comparing the penalized estimators to

Figure 4. Success probability distributions considered in the simulation study.

https://www.tandfonline.com/reader/content/182de8763f2/10.1080/02664763.2022.2103101/format/epub/EPUB/xhtml/f0004.xhtml
https://www.tandfonline.com/reader/content/182de8763f2/10.1080/02664763.2022.2103101/format/epub/EPUB/xhtml/f0004.xhtml
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maximum likelihood. An MSE ratio less than 1 indicates superior performance of the penalized estimator,
while an MSE ratio exceeding 1 indicates that the unpenalized estimator is preferred.

In Table  1, the results of shrinking success probabilities to zero are presented using the penalties 
, . In Table  2, the results of shrinking success probabilities closer to one another

using penalties  and  are presented. To recall these penalties, consult Section 2.2 of this paper.
The tables also report summary measures for the count variables simulated under the different

configurations, taking  and  as
summary measures of location and spread.

In Table 1, the best-performing penalty function when shrinking to 0 is . Even so,
the relative improvement in efficiency is small throughout. The only penalty that consistently leads to worse
performance than maximum likelihood is . Recall that this penalty function is not associated with a
norm and is able to very aggressively shrink success probabilities to 0. This simulation suggests that, at least
in the scenarios considered, this penalty shrinks too aggressively. For the other three estimators, VFCV
results in penalized estimators with slightly better performance than MLE.

In Table 2, the performance of the  and  penalties is nearly indistinguishable. When shrinking
parameters closer to one another, large gains in efficiency are sometimes realized. This is especially notable

Table 1. MSE ratios comparing penalized parameter estimates to maximum likelihood when shrinking estimators to
0. (Table view)

  Penalty
Shape Pen Pen Pen Pen

Skew 0.857 0.950 0.999 0.956 0.988 1.382
  Flat 1.200 1.158 0.999 0.968 0.995 1.012
  Bell 1.200 1.093 0.999 0.961 0.997 1.011

Skew 1.429 1.303 0.999 0.977 0.995 1.013
  Flat 2.200 1.726 1.000 0.982 0.994 1.004
  Bell 2.200 1.493 1.000 0.978 0.996 1.002

Skew 14.286 3.283 0.998 0.998 1.015 0.999
  Flat 16.000 3.749 0.999 0.998 1.037 1.000
  Bell 16.000 3.216 1.000 0.999 1.027 1.003

Table 2. MSE ratios comparing penalized parameter estimates to maximum likelihood when shrinking estimators
closer to one another. (Table view)

  Penalty
Shape L Q

Skew 0.857 0.950 0.928 0.906
  Flat 1.200 1.159 0.935 0.942
  Bell 1.200 1.093 0.705 0.704

Skew 4.571 2.149 0.960 0.952
  Flat 5.600 2.533 0.969 0.973
  Bell 5.600 2.255 0.854 0.856

Skew 12.857 2.965 0.411 0.411
  Flat 13.200 3.003 0.652 0.652
  Bell 13.200 2.979 0.292 0.293

https://www.tandfonline.com/reader/content/182de8763f2/10.1080/02664763.2022.2103101/format/epub/EPUB/xhtml/t0001.xhtml
https://www.tandfonline.com/reader/content/182de8763f2/10.1080/02664763.2022.2103101/format/epub/EPUB/xhtml/t0002.xhtml
https://www.tandfonline.com/reader/content/182de8763f2/10.1080/02664763.2022.2103101/format/epub/EPUB/xhtml/t0001.xhtml
https://www.tandfonline.com/reader/content/182de8763f2/10.1080/02664763.2022.2103101/format/epub/EPUB/xhtml/t0002.xhtml
https://www.tandfonline.com/reader/content/182de8763f2/10.1080/02664763.2022.2103101/format/epub/EPUB/xhtml/t0001.xhtml
https://www.tandfonline.com/reader/content/182de8763f2/10.1080/02664763.2022.2103101/format/epub/EPUB/xhtml/t0002.xhtml
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when the Beta shape from which the success probabilities are generated is bell-shaped, i.e. the  are close to
one another. In all instances, VFCV results in penalized estimators with performance superior to maximum
likelihood. Altogether, these simulations illustrate that both the average success probability and the spacing
of the  relative to that average are important in determining the reduction in MSE. In Table 2, we also note
that the MSE ratio tends to decrease, indicating better efficiency, when  is further from 0. For penalties
shrinking the  closer to one another, an MSE ratio below 0.3 was realized, showing dramatic improvement
due to shrinkage.

4.2. The zero-inflated binomial distribution

The probability mass function of the zero-inflated binomial (ZIB) distribution is

where γ represents the excess zero probability, and π and N are the binomial success probability and number
of trials. For , it follows that . Consequently, we note the overall
expected success proportion in a ZIB is . The parameter p is of primary interest
when considering possible penalty functions, especially under the assumption that the different ZIB
distributions are ‘similar’ to one another.

In the simulation study, samples  were generated with
independent ZIB variables,  and . The overall success
proportions  and the excess zero probabilities  were sampled from the scaled beta distributions as per
Figure 4 with the specific bounds  for the  and  for the  listed in the table below. In
total, 12 simulation configurations were considered: 3 distributional shapes ×4 choices for .
In the simulations, the binomial success probabilities  were recovered from the  and  through 

, . A total of k = 500 samples were simulated under each configuration.
The ZIB simulation considered three penalty functions, , 

, and .
The first of these, termed zero shrinkage, results in estimated  closer to 0. The second, termed mean
shrinkage, results in  closer to one another. The third, termed full shrinkage, shrinks all  closer to one
another and all  closer to one another. While both the penalties  and  have the goal of
estimating models that are ‘similar’ to one another, the second penalty is much more strict. To see this,
consider two passages with equal average difficulty . Under the first penalty, the contribution of
their squared difference is 0. However, it is possible to have  even when ,
meaning there could conceivably be a non-zero contribution to the full shrinkage penalty function.

In addition to using VFCV to select the level of shrinkage for the above three penalities, a combined
estimator, termed minCV , was calculated by selecting among the three penalized estimators the one with the
smallest VFCV score. The same set of 63 λ values ranging from 0 to  were used. The Monte Carlo
MSE ratios for the success proportions  are in Table 3. The MSE ratios for  and  were also calculated,
and these can be found in Table 8 of the Supplemental Material.

Table 3. MSE ratios for ZIB success proportions  comparing penalized parameter estimates to
maximum likelihood for different penalization approaches. (Table view)

  Penalty
Shape Zero Mean Full minCV
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Consider now Table  3. While zero shrinkage does result in some efficiency gains in most scenarios,
overall MSE ratios close to 1 suggest little improvement from using this penalty. On the other hand, both
mean and full shrinkage result in large decreases in the MSE ratios. Overall, it cannot be said that either
mean and full shrinkage performs best. This makes sense, as it depends on the configuration of all parameters
and not just the mean parameters. Finally, while minCV does not always have the smallest MSE ratio, it is
generally close to the minimum. This suggests that data-driven selection of the level of shrinkage as well as
the penalty function leads to good performance for the model.

4.3. The beta-binomial model

The probability mass function of the beta-binomial distribution is given by

where  is the so-called Beta function, N is the number of trials, and 
 and  control the mean and variance of the distribution. Defining 

and , the mean and variance of the distribution can be written
as  and . In this parameterization, p and ν denote, respectively, the
expected success proportion successes and the the over-dispersion relative to a binomial distribution with the
same mean value.

Samples  were generated with independent Beta-Binomial
variables, , with . The overall success proportions

 and the overdispersion measures  were sampled from the scaled beta distributions as per Figure 4 with
the specific bounds  for the  and  for the  listed in Table  4. Again, 12 simulation
configurations were considered. In the simulation, parameters  and  for the beta-binomial distribution
were recovered from the simulated  and  through the relationships in the preceding paragraph. A total of
K = 500 samples were simulated under each configuration.

  Penalty
Shape Zero Mean Full minCV

Skew 0.761 0.935 0.957 0.888 0.981 0.958
    Flat 1.055 1.153 0.977 0.942 0.979 0.983
    Bell 1.056 1.097 0.964 0.668 0.836 0.755

Skew 1.410 1.395 0.968 0.364 0.368 0.356
    Flat 1.502 1.485 0.971 0.562 0.526 0.523
    Bell 1.496 1.477 0.968 0.258 0.246 0.239

Skew 7.364 3.064 1.006 0.969 0.860 0.885
    Flat 8.551 3.586 1.010 1.005 0.808 0.819
    Bell 8.552 3.296 1.009 0.821 0.873 0.899

Skew 1.389 1.526 0.963 0.203 0.635 0.273
    Flat 1.209 1.531 0.955 0.223 0.934 0.259
    Bell 1.210 1.529 0.951 0.183 0.372 0.245

Table 4. MSE ratios for Beta-Binomial success proportions  comparing penalized parameter
estimates to maximum likelihood for different penalization approaches. (Table view)
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As in Section  4.2, three penalty functions. Letting , , these were 
, , and 

. These are again termed, respectively,
zero shrinkage, mean shrinkage, and full shrinkage. In addition to the three penalized estimators, an
estimator termed minCV was calculated by selecting among the three penalized estimators the one with the
smallest CV score. The MSE ratios for all estimators are reported in Table 4. The table shows the results for
the success proportions , and the equivalent results for  and  can be found in Table  9 of the
Supplemental Material.

Inspecting Table 4, zero shrinkage is noted to be the least effective approach here, even while still being
more effective than maximum likelihood. For most of the simulation configurations, MSE ratios under mean
and full shrinkage are comparable. Here, the minCV approach is also very impressive, in most instances
nearly matching the best-performing method. This reaffirms that VFCV can be effectively used to choose
both the level of shrinkage for a specific penalty function, but then also choose from among competing
penalty functions.

5. Data analysis

The methodology developed in this paper was motivated by the oral reading fluency data collected from a
sample of 508 elementary-school aged children. Each child was randomly assigned one of ten available
passages to read. This resulted in around 50 Words Read Incorrectly (WRI) scores per passage. Table  5
reports specific details for passage length, sample size per passage, as well as the minimum, median, and
maximum WRI scores. Of interest is to accurately and efficiently estimate passage difficulty as measured by
the average proportion of words read incorrectly. Note that higher WRI proportions (i.e. WRI counts divided
by passage length) indicate that a passage is more difficult. Figure 5 provides information about the passage-
specific WRI proportions. The solid dot in each violin plot represents the mean WRI proportion. The means
correspond to the unpenalized maximum likelihood estimates of passage difficulty.

  Penalty
Shape Zero Mean Full minCV

  Penalty
Shape Zero Mean Full minCV

Skew 2.361 3.102 0.917 0.474 0.428 0.429
    Flat 2.733 3.480 0.928 0.702 0.591 0.604
    Bell 2.730 3.455 0.921 0.290 0.270 0.271

Skew 5.742 3.755 0.974 0.722 0.726 0.708
    Flat 6.513 4.419 0.977 0.903 0.948 0.889
    Bell 6.515 4.327 0.973 0.476 0.466 0.463

Skew 6.947 4.929 0.971 0.301 0.400 0.331
    Flat 7.230 5.557 0.971 0.445 0.762 0.481
    Bell 7.221 5.555 0.968 0.217 0.242 0.227

Skew 1.952 2.723 0.905 0.170 0.469 0.211
    Flat 1.943 3.139 0.891 0.188 0.733 0.213
    Bell 1.949 3.183 0.893 0.155 0.187 0.175
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The mean WRI proportions in Figure 5 appear fairly close to one another, supporting the assumption that
the passages fall within a narrow range of difficulty. Thus, it is plausible that appropriate shrinkage will
result in improved estimates of difficulty.

Three models and three types of shrinkage were considered for the data at hand. We remind the reader
that classic selection criteria such as AIC and BIC cannot easily be applied in parameter shrinkage settings
unless one is able to calculate the effective number of parameters. In a penalized model with K specified
parameters, the effective number of parameters  can be dramatically smaller than K. Generally, there is no
easy way to calculate  in penalized models. We therefore used cross-validation (CV) to select the best
model, noting that such CV scores as per Geisser [10] represent a discrepancy measure for each model. The
lowest CV score corresponds to the smallest empirical discrepancy between observed data and estimated
model. Therefore, the smallest CV score corresponds to the optimal model choice. In each model under
consideration, the same set of data partitions was used to select a smoothing parameter with VFCV with V = 
10 fold. Table 6 reports the VFCV scores as defined in  (3). When the penalty in the table is specified as
‘None,’ the VFCV score corresponds to the unpenalized maximum likelihood estimators.

Figure 5. WRI proportions for the ten passages.

Table 5. Passage-level summary statistics. (Table view)

Passage Number 1 2 3 4 5 6 7 8 9 10
Sample Size 49 51 51 50 52 51 50 53 51 50
Passage Length 48 50 69 50 44 56 44 48 51 47
Minimum WRI 0 0 0 0 0 0 0 0 0 0
Median WRI 0 1 1 1 1 1 1 1 1 1
Maximum WRI 4 6 19 5 13 9 10 13 10 14

Table 6. 10-fold CV scores and optimal λ values for the three distributions considered. (Table view)

Distribution Penalty VFCV

Binomial None 1025.5 –
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It is evident from Table 6 that all variations of the beta-binomial model have much lower cross-validation
scores than either the binomial or zero-inflated binomial models. Furthermore, VFCV never selects
unpenalized maximum likelihood model for any of the distributions considered. With regards to penalty
type, full shrinkage works best for this model with mean shrinkage being a distant second choice. Table 7
shows the beta-binomial parameter estimates obtained using maximum likelihood as well as penalized
likelihood with mean shrinkage and full shrinkage. It is interesting to note that in the full shrinkage solution,
the  values have all been shrunk to within 0.01 of a common value, but the  still exhibit a fair spread of
values. For unpenalized maximum likelihood, the estimated success proportions range from 0.019 to 0.04,
while the full shrinkage values range from 0.024 to 0.034. The latter shows much more adherence to the idea
that the passages are similar in terms of difficulty.

For the interested reader, Figure  6 shows the penalized likelihood estimate trajectories for mean
shrinkage and full shrinkage as a function of λ. The estimates of  are presented on a logarithmic scale. For
mean shrinkage, the horizontal scale is  and for full shrinkage it is  with 

. These adjustments were all made to improve readability of the plots. Dashed vertical lines
indicate the optimal shrinkage solutions as determined by VFCV.

Distribution Penalty VFCV

  Zero 1024.9 3.56
  Mean 1017.1 4.36
ZIB None 964.7 –
  Zero 964.3 2.78
  Mean 959.6 3.96
  Full 950.4 3.56
BetaBin None 869.7 –
  Zero 869.5 2.41
  Mean 866.3 3.56
  Full 851.9 0.04

Table 7. Beta-binomial parameter estimates for the WRI data. (Table view)

  Maximum likelihood Mean shrinkage Full shrinkage
Passage

P1 1.28 66.34 0.019 1.20 52.67 0.022 0.70 27.45 0.025
P2 1.51 45.15 0.032 1.50 47.47 0.031 0.91 27.44 0.032
P3 0.84 19.85 0.040 0.80 22.81 0.034 0.96 27.44 0.034
P4 2.47 160.0 0.015 2.25 123.5 0.018 0.67 27.45 0.024
P5 1.17 42.54 0.027 1.17 41.65 0.027 0.83 27.45 0.030
P6 1.18 29.10 0.039 1.13 32.52 0.034 0.97 27.44 0.034
P7 0.53 19.48 0.026 0.53 18.75 0.027 0.74 27.44 0.026
P8 0.87 25.37 0.033 0.86 27.20 0.031 0.88 27.44 0.031
P9 0.85 32.25 0.026 0.84 30.74 0.027 0.79 27.45 0.028
P10 0.65 17.03 0.037 0.63 19.14 0.032 0.89 27.44 0.031
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Under mean shrinkage, the passage-specific  and  still exhibit a large spread even when the success
proportions  are close to one another. Under full shrinkage, the  values are very
quickly shrunk to a nearly common value while the  still exhibit some spread.

One last matter that we will briefly address is that of post-selection model checking. Using VFCV above,
the penalized beta-binomial model with full parameter shrinkage has been selected as the best model in a
relative sense. If one wishes to evaluate how well the model fits in an absolute sense, one might compare the
empirical and penalized model-based pmfs or cdfs. Figure  7 shows both of these comparisons using the
Passage 2 data as an example. These figures are presented with a note of caution – the penalized model-
based probabilities will almost never be as close to the empirical probabilities as the unpenalized
probabilities based on the same parametric model and estimated for that specific passage only i.e. ignoring
the data from other passages. As such, rather than a visual inspection, one may wish to use a more formal
diagnostic tool. Pearson's chi-square goodness-of-fit statistic is one possibility worth considering. The use of
this statistic is complicated by two matters. Firstly, as per Chernoff and Lehmann [5], the Pearson statistic no
longer has a limiting  distribution when evaluated using estimated model parameters. Secondly, the effect
of parameter penalization and model selection will further impact the distribution of the statistic. Therefore,
to find sensible critical values, one would have to rely on a Monte Carlo procedure that incorporates both
penalization and selection. This is a computationally burdensome procedure that we do not further consider
in the present paper.

Figure 6. Beta-binomial parameter estimates under mean shrinkage and full shrinkage. Dashed line indicates
optimal shrinkage. Scale value to improve full shrinkage plot readability is .
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6. Conclusions

The goal of this project was defining and exploring penalized parameter estimators of passage difficulty from
independent multivariate count data. WRI scores realized by 508 students during an ORF assessment
motivated the work and these data were analyzed in Section 5. The simulation results presented show that
across the different count distributions and simulation configurations considered, large decreases in MSE
relative to unpenalized maximum likelihood were often achieved. There is also very little risk in using
penalized likelihood, as V-fold cross validation never resulted in a large increase in MSE. In fact, the minCV
approach explored in the simulations point the cross-validation being able to choose not just the appropriate
level of shrinkage, but also the most appropriate penalty function under consideration. When applying the
methodology to the observed WRI data, a penalized beta-binomial model is selected. This choice results in
penalized estimators of the passage difficulty with a much tighter spread. This affirms the expectation that
the passages are similar in difficulty, with estimated difficulty scores ranging from  to . Even so,
this does highlight one important avenue for future research. If students are reading different passages to
assess ORF, it is desirable to have a method that standardizes WRI scores to be independent of passage
difficulty. In practice, students also typically read multiple passages, so exploring methods accounting for
correlated WRI scores need to be considered in future.
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